Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco.

Identifieur interne : 000519 ( Main/Exploration ); précédent : 000518; suivant : 000520

Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco.

Auteurs : Kai Zhao [République populaire de Chine] ; Zihan Cheng [République populaire de Chine] ; Qing Guo [République populaire de Chine] ; Wenjing Yao [République populaire de Chine] ; Huajing Liu [République populaire de Chine] ; Boru Zhou [République populaire de Chine] ; Tingbo Jiang [République populaire de Chine]

Source :

RBID : pubmed:33178243

Abstract

The MYB, one of the largest transcription factor families in plants, is related to various biological processes. For an example, the R2R3-MYB family plays an important role in regulation of primary and secondary metabolism, plant growth and development, and responses to hormones and stresses. However, functional studies on the poplar R2R3-MYB genes are limited. In this study, we identified 207 poplar R2R3-MYB genes that are unevenly distributed on the 19 chromosomes of poplar, followed by characterization of their conserved domains. On the basis of phylogenetic analysis, these genes can be divided into 23 groups. Evidence from synteny analyses indicated that the poplar R2R3-MYB gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, we investigated salt responsive genes and explored their expression patterns. Furthermore, we cloned the PsnMYB108 gene from poplar, which is significantly up-regulated in roots and leaves in response to salt stress. To validate its function, we developed transgenic tobacco plants that over-express the PsnMYB108 gene. It appears that the transgenic lines are more tolerant to salt stress than the wild type does. Evidence from physiological analyses demonstrated that over-expression of PsnMYB108 may improve tobacco salt stress tolerance by increasing the reactive oxygen species scavenging ability and the accumulation of proline. These results laid the foundation for future analysis and functional studies of poplar R2R3-MYB family members, and revealed that PsnMYB108 plays an important role in improving plant salt stress tolerance.

DOI: 10.3389/fpls.2020.571881
PubMed: 33178243
PubMed Central: PMC7596293


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of
<i>PsnMYB108</i>
Confers Salt Tolerance in Transgenic Tobacco.</title>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Qing" sort="Guo, Qing" uniqKey="Guo Q" first="Qing" last="Guo">Qing Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Huajing" sort="Liu, Huajing" uniqKey="Liu H" first="Huajing" last="Liu">Huajing Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33178243</idno>
<idno type="pmid">33178243</idno>
<idno type="doi">10.3389/fpls.2020.571881</idno>
<idno type="pmc">PMC7596293</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of
<i>PsnMYB108</i>
Confers Salt Tolerance in Transgenic Tobacco.</title>
<author>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Qing" sort="Guo, Qing" uniqKey="Guo Q" first="Qing" last="Guo">Qing Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Huajing" sort="Liu, Huajing" uniqKey="Liu H" first="Huajing" last="Liu">Huajing Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The MYB, one of the largest transcription factor families in plants, is related to various biological processes. For an example, the R2R3-MYB family plays an important role in regulation of primary and secondary metabolism, plant growth and development, and responses to hormones and stresses. However, functional studies on the poplar R2R3-MYB genes are limited. In this study, we identified 207 poplar R2R3-MYB genes that are unevenly distributed on the 19 chromosomes of poplar, followed by characterization of their conserved domains. On the basis of phylogenetic analysis, these genes can be divided into 23 groups. Evidence from synteny analyses indicated that the poplar R2R3-MYB gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, we investigated salt responsive genes and explored their expression patterns. Furthermore, we cloned the
<i>PsnMYB108</i>
gene from poplar, which is significantly up-regulated in roots and leaves in response to salt stress. To validate its function, we developed transgenic tobacco plants that over-express the
<i>PsnMYB108</i>
gene. It appears that the transgenic lines are more tolerant to salt stress than the wild type does. Evidence from physiological analyses demonstrated that over-expression of
<i>PsnMYB108</i>
may improve tobacco salt stress tolerance by increasing the reactive oxygen species scavenging ability and the accumulation of proline. These results laid the foundation for future analysis and functional studies of poplar R2R3-MYB family members, and revealed that
<i>PsnMYB108</i>
plays an important role in improving plant salt stress tolerance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33178243</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of
<i>PsnMYB108</i>
Confers Salt Tolerance in Transgenic Tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>571881</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.571881</ELocationID>
<Abstract>
<AbstractText>The MYB, one of the largest transcription factor families in plants, is related to various biological processes. For an example, the R2R3-MYB family plays an important role in regulation of primary and secondary metabolism, plant growth and development, and responses to hormones and stresses. However, functional studies on the poplar R2R3-MYB genes are limited. In this study, we identified 207 poplar R2R3-MYB genes that are unevenly distributed on the 19 chromosomes of poplar, followed by characterization of their conserved domains. On the basis of phylogenetic analysis, these genes can be divided into 23 groups. Evidence from synteny analyses indicated that the poplar R2R3-MYB gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, we investigated salt responsive genes and explored their expression patterns. Furthermore, we cloned the
<i>PsnMYB108</i>
gene from poplar, which is significantly up-regulated in roots and leaves in response to salt stress. To validate its function, we developed transgenic tobacco plants that over-express the
<i>PsnMYB108</i>
gene. It appears that the transgenic lines are more tolerant to salt stress than the wild type does. Evidence from physiological analyses demonstrated that over-expression of
<i>PsnMYB108</i>
may improve tobacco salt stress tolerance by increasing the reactive oxygen species scavenging ability and the accumulation of proline. These results laid the foundation for future analysis and functional studies of poplar R2R3-MYB family members, and revealed that
<i>PsnMYB108</i>
plays an important role in improving plant salt stress tolerance.</AbstractText>
<CopyrightInformation>Copyright © 2020 Zhao, Cheng, Guo, Yao, Liu, Zhou and Jiang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Zihan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Wenjing</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Huajing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Boru</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Tingbo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">R2R3-MYB gene family</Keyword>
<Keyword MajorTopicYN="N">Synteny analysis</Keyword>
<Keyword MajorTopicYN="N">Tissue-differential expression</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">salt stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33178243</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.571881</ArticleId>
<ArticleId IdType="pmc">PMC7596293</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 May;50(4):660-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 27;7:45324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28345675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Apr 1;9(4):1013-1029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28444194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Oct;52(10):1856-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1995;49:39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8563823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(2):263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9839469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2010 Aug 11;11:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20701777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30357350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 24;6:22980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27009386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2017 May 1;524:13-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27789233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1862-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2000 Aug 8;157(1):113-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2015 Nov;89(4-5):385-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26350403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Jun 28;70(12):3125-3138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30921458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 May;90(3):520-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28207974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):896-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Feb;13(2):67-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9055608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 May;174(1):154-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 05;5:11037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26047035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(4):907-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 May;31(5):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21399993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 May 1;59(5):946-965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29420810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2020 Aug 3;13(8):1194-1202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32585190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Dec;31(2 Pt 1):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6297766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Dec;289:110259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31623781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Nov 15;265(32):19990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2246275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Nov 01;20(21):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31683873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Mar;112:302-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28126679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 28;7:570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Sep 1;53(5):1181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 May 23;4:5054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Feb 4;326:13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2018 Sep;274:466-475</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30080636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Mar 24;69(7):1749-1764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29385617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Mar 14;6:e4502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29576971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Oct;24(10):934-946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31358471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Oct 25;18(20):6097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2172928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 28;8(10):e76369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jun 12;580(14):3498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Jan;46(1):74-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Aug;65(15):4255-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24821954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(10):e970406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Nov;92(3):437-451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28845529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):63-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Apr 12;10(1):1713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30979883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Dec;9(12):2183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9437863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Dec;289:110280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31623773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2019 Jun 1;39(6):1046-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30976801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2017 Sep 2;490(4):1355-1361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28690154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25300481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Nov;37(11):1499-1511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30014159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3553-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2019 Mar;136:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30639784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhao, Kai" sort="Zhao, Kai" uniqKey="Zhao K" first="Kai" last="Zhao">Kai Zhao</name>
</noRegion>
<name sortKey="Cheng, Zihan" sort="Cheng, Zihan" uniqKey="Cheng Z" first="Zihan" last="Cheng">Zihan Cheng</name>
<name sortKey="Guo, Qing" sort="Guo, Qing" uniqKey="Guo Q" first="Qing" last="Guo">Qing Guo</name>
<name sortKey="Jiang, Tingbo" sort="Jiang, Tingbo" uniqKey="Jiang T" first="Tingbo" last="Jiang">Tingbo Jiang</name>
<name sortKey="Liu, Huajing" sort="Liu, Huajing" uniqKey="Liu H" first="Huajing" last="Liu">Huajing Liu</name>
<name sortKey="Liu, Huajing" sort="Liu, Huajing" uniqKey="Liu H" first="Huajing" last="Liu">Huajing Liu</name>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<name sortKey="Yao, Wenjing" sort="Yao, Wenjing" uniqKey="Yao W" first="Wenjing" last="Yao">Wenjing Yao</name>
<name sortKey="Zhou, Boru" sort="Zhou, Boru" uniqKey="Zhou B" first="Boru" last="Zhou">Boru Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000519 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000519 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33178243
   |texte=   Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33178243" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020